Connect with us

Informational

Welding Burns: Types, Causes, Symptoms, and Cure

Burns are one of the most common and painful injuries in the welding shop. Both ultraviolet (UV) rays from welding and hot materials are potential sources of burns. Burns have a high risk of infection due to the presence of dead tissue.

To avoid infection, all burns must be treated medically. In this article, we will discuss in detail the different types of burns, their causes, and their symptoms.

Disclaimer: Everything about health mentioned in this article is for general knowledge and educational purposes only. I am not a medical professional. Always consult with a professional before making any decisions.

Types of Welding Burns

There are three most common types of welding burns:

  1. Thermal Burns
  2. Radiation (UV) burns
  3. Electrical Burns
thermal UV Electrical welding burn types comparison

1. Thermal burns

Contact with hot materials, such as the welding arc or hot metal, causes these burns. Depending on the depth and extent of the burn, they can range in severity from first to third degree. These classifications will be discussed further in this article.

Symptoms:

  • Pain
  • Red Skin
  • Swelling
  • blisters on the skin
  • black, charred skin

Preventions:

1. Use Protective Clothing: To protect your skin from hot materials and sparks, wear flame-resistant clothing, gloves, and a helmet with a face shield.

2. Use Tools to Handle Hot Materials: Handle hot materials with tongs or other appropriate tools; never touch hot materials with your bare hands.

3. Maintain a Safe Distance: While welding, keep a safe distance from hot materials and sparks.

2. Radiation (UV) burns

These burns are caused by exposure to UV light emitted by the welding arc. They can cause sunburn-like symptoms such as redness, itching, and pain in the eyes and skin.

Symptoms: In the Case of the Eyes

  • Redness of the eyes
  • Pain and discomfort in the eyes
  • Watering of the eyes
  • Sensitivity to light
  • Blurred vision
  • A feeling of grit or a foreign body in the eye

Symptoms: In the Case of the Skin

  • feels like sunburn.
  • Redness on the skin
  • Skin Itching
  • feels painful when the skin is exposed.
  • Crusting or scabbing of the skin
  • Discoloration of the skin (e.g., brown or black spots)
  • Fever or other signs of infection (e.g., pus, redness, warmth)

Preventions: In case of Eyes

1. Wear Eye Protection: It is important to always wear proper eye protection when welding. This includes a helmet with a shading lens that is appropriate for the specific welding process and conditions, as well as additional eye protection such as goggles or safety glasses.

2. Take Breaks: It is also a good idea to take breaks from welding to give the eyes a chance to rest and recover from UV exposure.

Preventions: In case of Skin

1. Wear Protective Gear and Clothes: Wear protective clothing to shield your skin and eyes from UV radiation, as well as use screens or barriers to block UV light.

2. Keep Your Skin Clean: Keep the affected area clean and apply a cool compress to reduce pain and swelling. Avoid applying creams or ointments to the burn, as these can trap heat and prolong the healing process.

3. Electrical burns

These are less common types of burns, but they must be addressed. An electrical current passing through the body causes these burns.

They are especially dangerous because the electrical current can cause internal organ damage as well as skin burns.

Symptoms:

  • Painful like other burns
  • redness and muscle spasms
  • Difficulty in Breathing
  • Nausea
  • Dizziness

Preventions:

1. Use caution when handling electrical equipment: Do not touch electrical equipment with wet hands, and never use damaged electrical cords or plugs.

Welding Burn Types Summary Chart

type of burnCauseSymptoms
Thermal BurnsContact with hot materials, such as the welding arc or hot metalPain, redness, swelling, blisters, black or white charred skin (depending on severity)
UV Burns (Welder’s Flash)Exposure to UV light emitted by the welding arcsunburn-like symptoms, such as redness, itching, and pain on exposed skin.
Electrical Burnsan electrical current passing through the bodyPain, redness, muscle spasms, difficulty breathing, nausea, confusion, and dizziness (depending on severity and location)
Types of welding burns, causes and symptoms chart

Three classifications of skin burns

  1. first-degree skin burn
  2. second-degree skin burn
  3. third-degree skin burn
first second and third degree burn comparison

1. First-degree skin burn

Temperatures around 130 °F (55 °C) can cause first-degree burns, which appear as a crimson, tender, and painful skin surface with no broken skin.

Treatment:

Cold water compresses (a clean, lint-free towel, washcloth, or handkerchief soaked in cold water) are the first line of defense against further damage and pain from a first-degree burn.

Cover the area with clean bandages or a cloth. Avoid using butter or other greasy substances to avoid sticking. Use only the treatments and medications prescribed by your doctor.

2. Second-degree skin burn

When the skin is exposed to temperatures above 130 °F (55 °C), the outer layer of the skin is severely damaged, resulting in blisters and possible skin breaks.

Treatment:

The first and most important step in treating a second-degree burn is to immerse the affected area in cold water (not ice) or apply cold water compresses until the pain subsides.

Before applying a sterile bandage or clean cloth to the area, gently dry it with a lint-free towel to prevent the spread of infection.

Breathing can be difficult if the burns are near the mouth or nose, or if they involve nasal hair. No ointments, sprays, antiseptics, or home remedies should be used.

In an emergency, water or cold tea, for example, can be used to treat burns. The goal is to rapidly reduce the temperature of the skin in order to limit tissue damage.

2. Third-degree skin burn

The temperature at which the skin and possibly the tissue beneath it begin to appear white or charred indicates the presence of third-degree burns, which usually occur around 480°F (250°C).

There may not be much pain at first because the nerve endings have been destroyed. Clothing that has become stuck to the burn should not be removed.

Treatment:

Applying cold compresses to burns, such as those made from ice water, should be avoided because it may result in an even more severe shock reaction.

It is not advisable to apply ointments, sprays, antiseptics, or home remedies to burns. If the victim is on fire, use something soft to smother the flames, such as a blanket, rug, or jacket.

Face, neck, and mouth burns can make breathing difficult; check to see if the victim is still breathing.

Apply a cold cloth or cool (not iced) water to burns on the face, hands, and feet to relieve the pain. Put on a thick, sterile, non-fluffy dressing to cover the affected area.

Burn TypeDepthAppearanceSymptoms
First-Degree BurnSuperficialRed, dry skinpain, redness, swelling
Second-Degree BurnPartial thicknessred, blistered skinPain, redness, swelling, and blistering
Third-Degree BurnFull thicknessWhite or black charred skinNumbness, pain (depending on location and severity), and white or black charred skin
classification of welding burn depth, appearance & symptoms

What is Welder’s Burn?

Welder’s burn, also known as arc burn or flash burn, is a type of burn caused by intense ultraviolet (UV) and infrared (IR) radiation emitted during welding.

Welder’s Burn Causes

Welder’s burn can occur for a variety of reasons, including 

1. Not Using Safety Equipment

Not wearing proper protective equipment, such as a welding helmet with a proper filter lens or flame-resistant clothing.

2. Poort Ventilation

Failure to use adequate ventilation or to position the work in a way that minimizes UV and IR radiation exposure.

3. In Correct Machine Settings

Setting the welding machine’s amperage or voltage too high can result in excessive heat and radiation which will ultimately result in the welder’s burn.

4. Working Near Reflective Surfaces

Working near reflective surfaces, such as metal, can increase the intensity of the radiation.

5. Lack of Proper Rest

Not taking adequate rest and cooling breaks can increase the risk of burns.

What Does Welding Burn Feel Like?

Welding burns can cause a variety of symptoms, depending on the severity and type of burn.

Mild burns, such as first-degree burns, can cause skin redness, pain, and swelling.

Moderate burns, such as second-degree burns, can result in red, swollen skin, blisters, pain, and moist, shiny skin.

Severe burns, such as third-degree burns, can result in burned skin that is black, brown, or white. skin that is charred or waxy, Sensation loss in the affected area (as a result of nerve damage), and muscle weakness or paralysis

How Do You Treat a Welder’s Burn?

Although I recommend visiting a doctor in case of an emergency you can use the following tips as first aid.

Here are some home remedies that you can try for welder’s burn:

1. Cool the Burn

You need to cool the burn to help reduce pain and swelling. Hold the burn under cool, running water for at least 10 minutes. Avoid using ice, as this can cause more harm than good.

2. Remove Clothes if Possible

If the burn is on a part of the body that is covered by tight clothing, gently remove the clothing to prevent it from sticking to the burn.

3. Cover and Protect the Burn

Cover the burn with a sterile bandage or a clean, dry cloth. Avoid using adhesive bandages, as they can stick to the burn and cause further damage.

4. Don’t break the blisters

Avoid breaking blisters: If the burn has caused blisters to form, do not break them. Blotches help to protect the burn and keep it clean.

It is important to note that these home remedies are only suitable for minor burns. If the burn is severe or if you are not sure how to treat it, seek medical attention from a professional.

How Long Do Welders’ Burns Last on the Skin?

The duration of a welder’s skin burn is determined by the severity of the burn and the extent of the damage.

Mild burns, such as first-degree burns, typically heal in a few days to a week and do not leave scars.

Second-degree burns, for example, can take several weeks to heal and may leave scarring.

Severe burns, such as third-degree burns, can be extremely dangerous and necessitate extensive medical treatment, such as skin grafts and surgery. These types of burns can take months or even years to heal and can result in permanent scarring and disfigurement.

Type of BurnSymptomsDuration of Healing
First-degreeRedness, mild pain1 week or less
Second-degreeRedness, swelling, blistering1-3 weeks
Third-degreeWhite or blackened, charred skin, numbnessseveral months
welding burn type and their healing duration chart

Is Welding Burn the Same as Sunburn?

Welding burns and sunburns are both caused by exposure to high levels of ultraviolet (UV) radiation.

Here’s a chart that compares welding burns to sunburns:

 Welding BurnsSunburns
Intensity and duration of UV exposureIntense, brief exposureProlonged exposure
Location of burncan affect any part of the body.It usually affects exposed parts of the body.
SymptomsPain, redness, swelling, and blistersPain, redness, swelling, and blistering
Treatmentmay require medical treatment.can usually be treated at home.
welding burn vs sun burn

Informational

How to Weld If You Have Long Hair? Pro Welder’s Tips

long hair man holding welding helmet
Shutter Stock

Any welding operation that you perform puts you and anyone else in the area in danger of a number of different things. As a result, it is completely reasonable for you to be concerned about preventing your hair from becoming entangled in any welding equipment and posing a threat to your health. In this article, I will talk about how you can safely weld if you have long hair.

If you want to weld while having long hair, a French braid is the best option for keeping your hair together. This will help you in tying your hair and hold it together behind your neck. The French braid should keep the hair compact and close to your head’s shape, and it also allows you to wear a welding helmet. As a result, you will be able to wear full safety equipment.

When you are dealing with hot weld spatters, having long hair can present a particularly difficult challenge. Therefore, if you are interested in learning more about how you can safely weld with long hair, continue reading the rest of this article, where I will discuss the topic in greater detail and share some helpful hints.

How Your Long Hair Can be an Issue While Welding?

Welding procedures, as I indicated earlier, expose the operator as well as anybody else in the vicinity of the workplace to a wide variety of risks. A project involving welding presents a number of potential dangers and threats; it is important that you be aware of these issues in order to protect not only yourself but also others around you. Especially when dealing with spatters, it is easy for things to go wrong if you have long hair.

Before we look at all of the tips you may weld with long hair, we need to first understand the potential risks you run and everything that might go wrong. Long hair poses a unique set of challenges when it comes to welding. A few are mentioned below:

  • Spatters are your hair’s worst enemy.
  • UV rays can permanently damage your hair.
  • With long hair, grinders can cause serious accidents.

Let’s look at these problems one by one:

1. Take Spatters Seriously 

The spatter, sparks, and heat generated by the arc provides the greatest challenge throughout the welding process since they may travel up to 35 feet and enter any nearby place. You will want to provide enough protection for your long hair if you are going to be in an atmosphere like this.

Not just your hair, but everything else that might catch fire should be kept at least 35 feet away from the welding location. In addition, a fire extinguisher should never be far away. In the event that a fire breaks out.

2. UV Rays Can Damage Your Hair Permanently

Molten metals, welding arcs, and ultraviolet radiation will be present in the work environment while welding is being done. The interaction of all these factors puts you at an increased risk of serious burns. The actual welding arc may reach temperatures of up to 10,000 degrees Fahrenheit, making it one of the hottest processes possible.

And believe me when I say that you do not want that welding arc to get anywhere near your hair. Your hair will suffer a significant amount of damage as a result, and it is possible that it could even be burned.

3. Grinder Can Give You Nightmares

The usage of grinders is another factor that may create issues for your lengthy hair. Using grinders and welding go hand in hand when working with metals. Therefore, if you are a welder, you will most likely make extensive use of the grinder. And grinders are really your worst enemy when it comes to your long hair.

When you’re working, you can find yourself crouching over a grinder, which can cause serious accidents if you don’t protect your hair properly.

Tips from a Pro Welder to Protect Your Long Hair When Welding

Now you know what the most obvious dangers that you have when welding with long hair. The next step is to tell you how you can keep yourself safe from those dangers.

Here are a few of the tips that you can consider:

  • Braid your hair while welding
  • Put your hair in a tight knot behind your neck
  • Consider buying a welding cap
  • You can use a bandana too if you are a bandana lover

Let’s discuss these tips one by one:

Braid hair woman welding

1. Braiding is the Best Option You Have

Welding hoods, helmets, or shields will provide the optimum amount of protection from any sparks, heat, UV rays, flash burns, or infrared light that may be present. They will protect not only your face and neck but also your eyes and hair. As a result, I feel that acquiring one is the best approach to protecting oneself.

Welding hoods are often made of cotton or leather and are rather light in weight and can go easily along with helmets. Make sure that whichever helmet you decide to purchase, is not too heavy and that it is comfortable to wear. It must also include a spatter barrier, the ability to be modified, a sensor bar, and the availability of replacement components.

2. You Can Simply Put Your Hair in a Tigh Knot

The most conventional and easiest technique for a welder operator to keep their long hair out of their face is to pull it back into a tight bun. Wrap an elastic band over your buns and secure them in place to prevent them from falling on your face.

If there are any unruly hairs, just use bobby pins to push them up and you should be OK. Anything that prevents your hair from falling on your face will suffice.

3. Consider Buying a Welding Cap

A welding cap is a good option if you want something that is both lightweight and comfortable. It must adequately shield your head from any hot metal, sparks, or splatters that may be present.

Not only they are effective in protecting your hair, but they are also made completely of cotton, making them incredibly breathable and also preventing sweat from pouring down your eyebrows while working.

4. Bandana is Another Option That You Can Use

Braids are not easy to create for everyone, and they may even be difficult to perform on a regular basis. If you don’t know how to braid my easiest suggestion would be to put a bandana over your head and tuck all of your hair within.

When welding, sparks will fly everywhere, and this will keep you safe. Make use of bobby pins or a bun to tuck in all of the ends. Bandanas aren’t my first choice for headgear. But it works. It’s a good option to have in case you don’t know how to braid your hair.

Few Other Safety Measures That You Need to Take

In addition to your hair, there are a few other parts of your body that need your attention. Some of these essential measures for ensuring your safety are listed below:

  • Protect your eyes at all cost
  • Always keep a fire extinguisher in your shop
  • Wear protective clothing
  • Make habit of using respirators
  • Beware of leakages in your welding system
  • Keep your welding space clean

Let’s discuss them one by one:

1. Protect your eyes at all cost

Be sure to always wear safety glasses in your workplace to protect your eyes from flying debris, which is often composed of metal. If you routinely do welding tasks, you will be exposed to a significant amount of flying debris.

You should make it a routine to put them on as soon as you come in the door; this will ensure that you are protected at all times.

2. Always keep a fire extinguisher in your shop

You shouldn’t be shocked if anything catches fire at some time during a welding operation because of all of the intense heat and sparks that are produced throughout the process. Because fires are a very real risk, you should always have an extinguisher on hand in case one breaks out.

3. Wear protective clothing

If you’ve ever imagined yourself beginning your first welding project in a pair of shorts, an old t-shirt, and a pair of flip-flops, you should rethink that idea. Wearing the necessary protective clothing at all times when welding is required if you wish to prevent injuries to your body, notably burns, that may be caused by the process.

4. Make habit of using respirators

You should always wear a respirator if you are going to be dealing with metals or any other materials that have the potential to emit harmful vapors.

Welding or cutting certain materials may produce a welding plume, which is a combination of hazardous gases, fumes, and smoke. This is not the type of thing you want to breathe in if you want to keep your lungs healthy and prevent respiratory issues.

If you are interested in knowing more about respirators and their types, please check out my other article.

5. Beware of leakages in your welding system

There is a good chance that you have pressurized containers in your welding shop that hold liquids or gases. Take extra precautions to check that none of those containers or the items that you are attaching to them have any leaks in them.

See my other article to know more about leakages and how to detect them.

6. Maintain your equipment

If you want to establish the safest possible working environment for your welding projects, you need to give your equipment a lot of TLC and make sure it’s in good operating order at all times. If your welding equipment and tools are in disrepair, an accident is almost waiting to happen every time you use them. However, the vast majority of incidents of this kind are avoidable if proper care is taken with the equipment.

Wrapping it Up

When it comes to welding, safety is the most important thing to keep in mind at all times. Because because welding involves a significant amount of fire and spatters, it is essential that you take a significant amount of precaution to protect your hair. I really hope that you’ll be able to keep your hair under control while welding thanks to the advice that’s been provided in this article.

Continue Reading

Weld Types

Different Welding Methods: Applications of Each Method

welding techinques
Shutter Stock

Welding is joining two pieces of metal together by melting and cooling them until they become one piece. Welding processes include:

  • Oxyacetylene welding
  • Shielded metal arc welding (Stick)
  • Gas tungsten arc welding (TIG)
  • Gas metal arc welding (MIG)
  • Flux-cored arc welding
  • Torch or oxyfuel brazing

Some methods employ both heat and pressure, while others employ only heat. Welding is commonly used to construct automobiles, airplanes, and buildings. Other metal-cutting methods, such as oxy-acetylene and plasma arc cutting, use heat or electricity to cut through metal.

1. Oxyacetylene welding

Oxyacetylene welding (OAW) is a method of joining two pieces of metal using heat generated by the combustion of oxygen and acetylene gas.

Torch brazing (TB) is similar, but the metal is not completely melted. Instead, a special alloy is melted and used to join the two metal pieces.

Oxyfuel gas cutting (OFC) is a method of cutting metal that uses the same tools and gases as OAW and TB.

To generate heat and bond the metal, all of these methods employ a torch and special gases. They are frequently used on small or thin metal pieces.

Applications:

  • Welding and brazing thin or small pieces of metal
  • Welding and brazing dissimilar metals
  • Cutting and piercing metal

Situations to Avoid:

  • Welding thick or heavy sections of metal
  • Welding high alloy or stainless steel
  • Welding in high wind or outdoor conditions (due to the open flame)
  • Welding in confined spaces (due to the production of harmful gases)

2. Shielded metal arc welding (Stick)

Shielded metal arc welding, or SMAW, is a way of welding metal together using an electrode that is coated with a special kind of flux.

The electrode melts and becomes a part of the welded metal. To do SMAW welding, you need a transformer, two welding cables, a work clamp, and an electrode holder.

There are many different types of electrodes you can use for SMAW welding, so you can choose the one that is best for your project. With SMAW welding, you can join different types and thicknesses of metal using the same machine.

Applications:

  • Welding thick or heavy sections of metal
  • Welding in outdoor conditions
  • Welding in dirty or contaminated environments
  • Welding on dirty or painted surfaces

Situations to Avoid:

  • Welding thin or small pieces of metal (more suited for TIG welding)
  • Welding high alloy or stainless steel (can affect the quality of the weld)
  • Welding in confined spaces (due to the production of harmful gases)
  • Welding in the presence of high winds (due to the electric arc)

3. Gas tungsten arc welding

GTAW, or gas tungsten arc welding, is a method of joining metal using a tungsten electrode. The tungsten electrode generates an electric arc, which melts the metal being welded as well as the end of the filler metal, which is manually applied.

Shielding gas is emitted from the welding gun to protect the molten weld metal from dirt and other contaminants. A foot or thumb switch can be added to the GTAW equipment to help the welder better control the welding.

GTAW welding produces very clean, high-quality welds, but it is slower and requires more skill than other welding methods. It is particularly useful for joining metal alloys that can only be joined with GTAW.

Applications:

  • Welding thin or small pieces of metal
  • Welding high alloy or stainless steel
  • Welding in outdoor conditions (with proper shielding gas)
  • Welding materials with high levels of contaminants or impurities
  • Welding in high-precision environments

Situations to Avoid:

  • Welding thick or heavy sections of metal (more suited for MIG welding)
  • Welding in high production environments (slower process)
  • Welding in confined spaces (due to the production of harmful gases)
  • Welding in the presence of high winds (due to the electric arc)

4. Gas metal arc welding (MIG)

Mig welding is a type of arc welding that uses a continuously supplied wire electrode and gas to weld metal together.

It is becoming more popular because it is easier to learn than other types of welding, like stick and tig welding, and it is faster because you don’t have to stop and change the electrode as often.

Mig welding also creates less slag and spatter, which makes it more enjoyable to use and easier to clean up.

However, MIG welding equipment is more expensive and the MIG gun, which is the portable part of the equipment, can be difficult to use in small spaces. Mig welding also requires a shielding gas to work, so it is not as good for outdoor use.

Applications:

  • Welding thick or heavy sections of metal
  • Welding high alloy or stainless steel
  • Welding in high-production environments
  • Welding in outdoor conditions (with proper shielding gas)

Situations to Avoid:

  • Welding thin or small pieces of metal (more suited for TIG welding)
  • Welding in confined spaces (due to the production of harmful gases)
  • Welding in the presence of high winds (due to the electric arc)
  • Welding materials with high levels of contaminants or impurities (can affect the quality of the weld)

5. Flux-cored arc welding

Flux-cored arc welding, or FCAW, is a method of joining metal using a special type of electrode wire known as a flux core wire.

The wire is fed from a spool continuously through the welding equipment and out of the gun. The welding current flows through the equipment, melting the wire and the base metal.

Some flux core wires generate their own shielding gas as they melt, while others require the use of additional shielding gas. As the wire melts, it produces a gaseous cloud that shields the weld surface and removes impurities from the molten metal.

After the weld is completed, a layer of slag must be removed from the weld’s top. Despite this additional step, FCAW is a popular welding technique because it produces high-quality welds quickly and is very versatile.

FCAW equipment is similar to that used in gas metal arc welding (GMAW), and both methods are semiautomatic, which means that the wire is fed automatically but the welder moves the gun manually. Welding supply stores and other retailers stock FCAW equipment and filler metals.

Applications:

  • Welding thick or heavy sections of metal
  • Welding in outdoor conditions (with proper shielding gas)
  • Welding in high-production environments
  • Welding in dirty or contaminated environments

Situations to Avoid:

  • Welding thin or small pieces of metal (more suited for TIG welding)
  • Welding high alloy or stainless steel (can affect the quality of the weld)
  • Welding in confined spaces (due to the production of harmful gases)
  • Welding in the presence of high winds (due to the electric arc)

Comparison Table:

Welding ProcessApplicationsSituations to Avoid
Oxyacetylene weldingWelding and brazing thin or small pieces of metal; welding and brazing dissimilar metals; cutting and piercing metalWelding thick or heavy sections of metal; welding high alloy or stainless steel; welding in high wind or outdoor conditions; welding in confined spaces
Shielded metal arc welding (Stick)Welding thick or heavy sections of metal; welding in outdoor conditions; welding in dirty or contaminated environments; welding on dirty or painted surfacesWelding thin or small pieces of metal; welding high alloy or stainless steel; welding in confined spaces; welding in the presence of high winds
Gas tungsten arc welding (TIG)Welding thin or small pieces of metal; welding high alloy or stainless steel; welding in outdoor conditions (with proper shielding gas); welding materials with high levels of contaminants or impurities; welding in high-precision environmentsWelding thick or heavy sections of metal; welding in high production environments; welding in confined spaces; welding in the presence of high winds
Gas metal arc welding (MIG)Welding thick or heavy sections of metal; welding in high production environments; welding in outdoor conditions; welding on dirty or painted surfacesWelding thin or small pieces of metal; welding high alloy or stainless steel; welding in confined spaces; welding in the presence of high winds
Flux-cored arc weldingWelding thick or heavy sections of metal; welding in high production environments; welding in outdoor conditions; welding on dirty or painted surfacesWelding thin or small pieces of metal; welding high alloy or stainless steel; welding in confined spaces; welding in the presence of high winds
Continue Reading