Connect with us

Informational

Millermatic 251 Complete Buying Guide: Used vs New? [Solved]

Millermatic 251
MillerWelds.com

The Millermatic 251 is a tool that almost all welders are thinking about getting or are already using at work. In the welding community, however, there are a lot of misunderstandings and questions about the Millermatic 251.

In this article, I’ll talk in-depth about the specs of the Millermatic 251, and we’ll also talk about whether you should buy a new or used machine.

Millermatic 251 is a Great Machine in the Right Hands

The Miller company is known for making great welders, and the Millermatic 251 is one of their successful products. It will only work best for you only if you know how to use it.

With 250 Amps at 28 VDC, the Millermatic 251 Mig Welder has the highest output rating in its class.

Digital timers and a big digital control panel on the front of the welder let you change settings like voltage and wire feed speed.

In a single pass, the Millermatic 251 is able to weld materials with thicknesses ranging from 22 gauge all the way up to 1/2 inch.

The Active Arc Stabilizer technology provides excellent starts, and the line voltage compensation provides constant output despite fluctuations in the amount of input power.

The “Auto Gun Detect” function of the machine makes it possible to pull the trigger on the MIG gun, spool gun, or push-pull gun.

If the gun has a timer, the welder will pick it up right away, along with the voltage and the speed of the wire feed.

The Millermatic 251 Mig Welder has a unique flip-down chamber that holds the welder’s parameter chart and other consumables. This lets customers get it right the first time they use it.

Things You Will Get Along with the New Millermatic 251

If you have decidee to buy a new Millermatic 251 then these are a few of the things that you will get along with it for free.

  1. The power cord and plug (only for the 200/230 V model)
  2. M-25 MIG gun with a range of 12 feet (3.7 meters) and a capacity of 250 amps for.030/.035-inch wire
  3. Cable and clamp for working.
  4. Argon mixture regulator and flow gauge, along with a hose
  5. Extra contact tips
  6. reversible drive rolls with running gear and cylinder rack installed from the factory at.030/.035 in.

What Year was the Millermatic 251 Made?

The Millermatic 251 was made in 2005, according to the user manual included with the machine. Miller Industries, on the other hand, does not reveal the machine’s exact production date.

How Many Amps is Millermatic 251?

Millermatic 251 has an Amperage range of 30 – 300 Amps. This machine has a duty cycle of 60p% when it is operated at 200 amperes. And if you use it at 250 amps, the duty cycle will be 40%.

[table id= 17/]

How Many Watts is the Millermatic 251?

When working with 28 VDC, the power of the Millermatic 251 ranges from 5600 to 7000 watts. Both 200 amps and 250 amps can be used with this machine.

You can easily figure out how many watts a Millermatic 251 has by multiplying the amps by VDC.

Millermatic 251’s Amps = 200 – 250 Amps

Millermatic 251’s Volts = 28 VDC

Watt Power = Amps X Volts

Watt Power of Millermatic 251 = 200 x 28 = 5600 watts or 250 x 28 = 7000 watts.

Can a Millermatic 251 Weld Aluminum?

Millermatic 251 can be used to weld aluminum, but a Spool gun module is required. The 251 Vintage Millermatic spool gun module employs both flux core (FCAW) and MIG (GMAW) welding.

The following spool guns are compatible with Millermatic 251:

  1. Spoolmatic 15A
  2. Spoolmatic 30A

Millermatic 251 Specifications Chart

[table id= 18/]

Millermatic 251 weighs about 98 kg and has dimensions of 32 x 19 x 39 in. It supports solid steel, stainless steel, and flux-cored wires with a wire diameter range of 0.6 to 1.2 mm. It can also work at either a 40% or 60% duty cycle.

Specification image from manual

What is the Duty Cycle of Millermatic 251?

Duty Cycle:  The duty cycle is the proportion of 10 minutes that the device can weld at full power without overheating. If the equipment overheats, the thermostat(s) opens, the output stops, and the cooling fan operates. Allow fifteen minutes for the device to cool.

Millermatic 250 60 duty cycle flow chart

The Millermatic 251 is able to function at a duty cycle of either 60% or 40%. This indicates that the machine can weld for 6 minutes at a current of 200 amperes before needing to rest for four minutes.

whereas at a current of 250 amperes it works for 4 minutes before needing to rest for six seconds.

Millermatic 250 40 duty cycle flow chart

If the Millermatic 251 begins to overheat, one of two things must happen: either the user must wait fifteen minutes for the machine to cool down, or the user must reduce the duty cycle before restarting the welding process.

Pros of Millermatic 251

  • The highest-rated output of all the welders (250 Amps)
  • Large digital control panel
  • Built-in digital timers
  • The voltage compensation feature keeps the power supply constant
  • Starts can be smooth with an adjustable run-in period.
  • No additional module is needed to connect a Spoolmatic 30A or 15A gun.
  • If the welding tip becomes shorted to the work surface, the “Tip Saver” feature will cut power to the welding machine.
  • If no arc is detected within three seconds of pulling the gun’s trigger, the weld output will be cut off.
  • Automatically adjusting digital thermometers with a fan function
  • Heavy-duty, aluminum-casting, dual-gear industrial drive system

Cons of Millermatic 251

  • No negative feedback from users, apart from price issues

Is it Worth Buying a Used Millermatic 251?

If you are just starting out in the welding industry and are a novice, you should get a used Millermatic 251 since it will save you money that you can use towards other necessary instruments. However, if you have a successful company and earn a lot of money, you should invest in a modern Millermatic 251, which will save you money on energy and increase the quality of your welds.

Old vs New Millermatic 251: Price Comparison

At the time of writing, a brand-new Millermatic 250 could be purchased on Amazon for $4800. If you wish to purchase a used one, the price might range from $1500 to $2200, depending on the machine’s condition.

[table id= 16/]

Checklist for Buying a used Millermatic 251

When buying a used welder, there are a few things you should look at more closely. You don’t want to add a broken welder to your collection of tools.

  • Does it make beads of the same size?
  • When the wire is being fed, does it move smoothly or does it slip and jerk?
  • Make sure the gas cup is in the right place, the tip is not bent, and there is no slag blocking the wire feed.
  • Make sure the size and tension of the wire are right for the driving wheels.

Miller 251 Alternatives

? Millermatic 250 Review

? Millermatic 252 Review

? Download Millermatic 251 Official User Manual

Informational

How to Weld If You Have Long Hair? Pro Welder’s Tips

long hair man holding welding helmet
Shutter Stock

Any welding operation that you perform puts you and anyone else in the area in danger of a number of different things. As a result, it is completely reasonable for you to be concerned about preventing your hair from becoming entangled in any welding equipment and posing a threat to your health. In this article, I will talk about how you can safely weld if you have long hair.

If you want to weld while having long hair, a French braid is the best option for keeping your hair together. This will help you in tying your hair and hold it together behind your neck. The French braid should keep the hair compact and close to your head’s shape, and it also allows you to wear a welding helmet. As a result, you will be able to wear full safety equipment.

When you are dealing with hot weld spatters, having long hair can present a particularly difficult challenge. Therefore, if you are interested in learning more about how you can safely weld with long hair, continue reading the rest of this article, where I will discuss the topic in greater detail and share some helpful hints.

How Your Long Hair Can be an Issue While Welding?

Welding procedures, as I indicated earlier, expose the operator as well as anybody else in the vicinity of the workplace to a wide variety of risks. A project involving welding presents a number of potential dangers and threats; it is important that you be aware of these issues in order to protect not only yourself but also others around you. Especially when dealing with spatters, it is easy for things to go wrong if you have long hair.

Before we look at all of the tips you may weld with long hair, we need to first understand the potential risks you run and everything that might go wrong. Long hair poses a unique set of challenges when it comes to welding. A few are mentioned below:

  • Spatters are your hair’s worst enemy.
  • UV rays can permanently damage your hair.
  • With long hair, grinders can cause serious accidents.

Let’s look at these problems one by one:

1. Take Spatters Seriously 

The spatter, sparks, and heat generated by the arc provides the greatest challenge throughout the welding process since they may travel up to 35 feet and enter any nearby place. You will want to provide enough protection for your long hair if you are going to be in an atmosphere like this.

Not just your hair, but everything else that might catch fire should be kept at least 35 feet away from the welding location. In addition, a fire extinguisher should never be far away. In the event that a fire breaks out.

2. UV Rays Can Damage Your Hair Permanently

Molten metals, welding arcs, and ultraviolet radiation will be present in the work environment while welding is being done. The interaction of all these factors puts you at an increased risk of serious burns. The actual welding arc may reach temperatures of up to 10,000 degrees Fahrenheit, making it one of the hottest processes possible.

And believe me when I say that you do not want that welding arc to get anywhere near your hair. Your hair will suffer a significant amount of damage as a result, and it is possible that it could even be burned.

3. Grinder Can Give You Nightmares

The usage of grinders is another factor that may create issues for your lengthy hair. Using grinders and welding go hand in hand when working with metals. Therefore, if you are a welder, you will most likely make extensive use of the grinder. And grinders are really your worst enemy when it comes to your long hair.

When you’re working, you can find yourself crouching over a grinder, which can cause serious accidents if you don’t protect your hair properly.

Tips from a Pro Welder to Protect Your Long Hair When Welding

Now you know what the most obvious dangers that you have when welding with long hair. The next step is to tell you how you can keep yourself safe from those dangers.

Here are a few of the tips that you can consider:

  • Braid your hair while welding
  • Put your hair in a tight knot behind your neck
  • Consider buying a welding cap
  • You can use a bandana too if you are a bandana lover

Let’s discuss these tips one by one:

Braid hair woman welding

1. Braiding is the Best Option You Have

Welding hoods, helmets, or shields will provide the optimum amount of protection from any sparks, heat, UV rays, flash burns, or infrared light that may be present. They will protect not only your face and neck but also your eyes and hair. As a result, I feel that acquiring one is the best approach to protecting oneself.

Welding hoods are often made of cotton or leather and are rather light in weight and can go easily along with helmets. Make sure that whichever helmet you decide to purchase, is not too heavy and that it is comfortable to wear. It must also include a spatter barrier, the ability to be modified, a sensor bar, and the availability of replacement components.

2. You Can Simply Put Your Hair in a Tigh Knot

The most conventional and easiest technique for a welder operator to keep their long hair out of their face is to pull it back into a tight bun. Wrap an elastic band over your buns and secure them in place to prevent them from falling on your face.

If there are any unruly hairs, just use bobby pins to push them up and you should be OK. Anything that prevents your hair from falling on your face will suffice.

3. Consider Buying a Welding Cap

A welding cap is a good option if you want something that is both lightweight and comfortable. It must adequately shield your head from any hot metal, sparks, or splatters that may be present.

Not only they are effective in protecting your hair, but they are also made completely of cotton, making them incredibly breathable and also preventing sweat from pouring down your eyebrows while working.

4. Bandana is Another Option That You Can Use

Braids are not easy to create for everyone, and they may even be difficult to perform on a regular basis. If you don’t know how to braid my easiest suggestion would be to put a bandana over your head and tuck all of your hair within.

When welding, sparks will fly everywhere, and this will keep you safe. Make use of bobby pins or a bun to tuck in all of the ends. Bandanas aren’t my first choice for headgear. But it works. It’s a good option to have in case you don’t know how to braid your hair.

Few Other Safety Measures That You Need to Take

In addition to your hair, there are a few other parts of your body that need your attention. Some of these essential measures for ensuring your safety are listed below:

  • Protect your eyes at all cost
  • Always keep a fire extinguisher in your shop
  • Wear protective clothing
  • Make habit of using respirators
  • Beware of leakages in your welding system
  • Keep your welding space clean

Let’s discuss them one by one:

1. Protect your eyes at all cost

Be sure to always wear safety glasses in your workplace to protect your eyes from flying debris, which is often composed of metal. If you routinely do welding tasks, you will be exposed to a significant amount of flying debris.

You should make it a routine to put them on as soon as you come in the door; this will ensure that you are protected at all times.

2. Always keep a fire extinguisher in your shop

You shouldn’t be shocked if anything catches fire at some time during a welding operation because of all of the intense heat and sparks that are produced throughout the process. Because fires are a very real risk, you should always have an extinguisher on hand in case one breaks out.

3. Wear protective clothing

If you’ve ever imagined yourself beginning your first welding project in a pair of shorts, an old t-shirt, and a pair of flip-flops, you should rethink that idea. Wearing the necessary protective clothing at all times when welding is required if you wish to prevent injuries to your body, notably burns, that may be caused by the process.

4. Make habit of using respirators

You should always wear a respirator if you are going to be dealing with metals or any other materials that have the potential to emit harmful vapors.

Welding or cutting certain materials may produce a welding plume, which is a combination of hazardous gases, fumes, and smoke. This is not the type of thing you want to breathe in if you want to keep your lungs healthy and prevent respiratory issues.

If you are interested in knowing more about respirators and their types, please check out my other article.

5. Beware of leakages in your welding system

There is a good chance that you have pressurized containers in your welding shop that hold liquids or gases. Take extra precautions to check that none of those containers or the items that you are attaching to them have any leaks in them.

See my other article to know more about leakages and how to detect them.

6. Maintain your equipment

If you want to establish the safest possible working environment for your welding projects, you need to give your equipment a lot of TLC and make sure it’s in good operating order at all times. If your welding equipment and tools are in disrepair, an accident is almost waiting to happen every time you use them. However, the vast majority of incidents of this kind are avoidable if proper care is taken with the equipment.

Wrapping it Up

When it comes to welding, safety is the most important thing to keep in mind at all times. Because because welding involves a significant amount of fire and spatters, it is essential that you take a significant amount of precaution to protect your hair. I really hope that you’ll be able to keep your hair under control while welding thanks to the advice that’s been provided in this article.

Continue Reading

Weld Types

Different Welding Methods: Applications of Each Method

welding techinques
Shutter Stock

Welding is joining two pieces of metal together by melting and cooling them until they become one piece. Welding processes include:

  • Oxyacetylene welding
  • Shielded metal arc welding (Stick)
  • Gas tungsten arc welding (TIG)
  • Gas metal arc welding (MIG)
  • Flux-cored arc welding
  • Torch or oxyfuel brazing

Some methods employ both heat and pressure, while others employ only heat. Welding is commonly used to construct automobiles, airplanes, and buildings. Other metal-cutting methods, such as oxy-acetylene and plasma arc cutting, use heat or electricity to cut through metal.

1. Oxyacetylene welding

Oxyacetylene welding (OAW) is a method of joining two pieces of metal using heat generated by the combustion of oxygen and acetylene gas.

Torch brazing (TB) is similar, but the metal is not completely melted. Instead, a special alloy is melted and used to join the two metal pieces.

Oxyfuel gas cutting (OFC) is a method of cutting metal that uses the same tools and gases as OAW and TB.

To generate heat and bond the metal, all of these methods employ a torch and special gases. They are frequently used on small or thin metal pieces.

Applications:

  • Welding and brazing thin or small pieces of metal
  • Welding and brazing dissimilar metals
  • Cutting and piercing metal

Situations to Avoid:

  • Welding thick or heavy sections of metal
  • Welding high alloy or stainless steel
  • Welding in high wind or outdoor conditions (due to the open flame)
  • Welding in confined spaces (due to the production of harmful gases)

2. Shielded metal arc welding (Stick)

Shielded metal arc welding, or SMAW, is a way of welding metal together using an electrode that is coated with a special kind of flux.

The electrode melts and becomes a part of the welded metal. To do SMAW welding, you need a transformer, two welding cables, a work clamp, and an electrode holder.

There are many different types of electrodes you can use for SMAW welding, so you can choose the one that is best for your project. With SMAW welding, you can join different types and thicknesses of metal using the same machine.

Applications:

  • Welding thick or heavy sections of metal
  • Welding in outdoor conditions
  • Welding in dirty or contaminated environments
  • Welding on dirty or painted surfaces

Situations to Avoid:

  • Welding thin or small pieces of metal (more suited for TIG welding)
  • Welding high alloy or stainless steel (can affect the quality of the weld)
  • Welding in confined spaces (due to the production of harmful gases)
  • Welding in the presence of high winds (due to the electric arc)

3. Gas tungsten arc welding

GTAW, or gas tungsten arc welding, is a method of joining metal using a tungsten electrode. The tungsten electrode generates an electric arc, which melts the metal being welded as well as the end of the filler metal, which is manually applied.

Shielding gas is emitted from the welding gun to protect the molten weld metal from dirt and other contaminants. A foot or thumb switch can be added to the GTAW equipment to help the welder better control the welding.

GTAW welding produces very clean, high-quality welds, but it is slower and requires more skill than other welding methods. It is particularly useful for joining metal alloys that can only be joined with GTAW.

Applications:

  • Welding thin or small pieces of metal
  • Welding high alloy or stainless steel
  • Welding in outdoor conditions (with proper shielding gas)
  • Welding materials with high levels of contaminants or impurities
  • Welding in high-precision environments

Situations to Avoid:

  • Welding thick or heavy sections of metal (more suited for MIG welding)
  • Welding in high production environments (slower process)
  • Welding in confined spaces (due to the production of harmful gases)
  • Welding in the presence of high winds (due to the electric arc)

4. Gas metal arc welding (MIG)

Mig welding is a type of arc welding that uses a continuously supplied wire electrode and gas to weld metal together.

It is becoming more popular because it is easier to learn than other types of welding, like stick and tig welding, and it is faster because you don’t have to stop and change the electrode as often.

Mig welding also creates less slag and spatter, which makes it more enjoyable to use and easier to clean up.

However, MIG welding equipment is more expensive and the MIG gun, which is the portable part of the equipment, can be difficult to use in small spaces. Mig welding also requires a shielding gas to work, so it is not as good for outdoor use.

Applications:

  • Welding thick or heavy sections of metal
  • Welding high alloy or stainless steel
  • Welding in high-production environments
  • Welding in outdoor conditions (with proper shielding gas)

Situations to Avoid:

  • Welding thin or small pieces of metal (more suited for TIG welding)
  • Welding in confined spaces (due to the production of harmful gases)
  • Welding in the presence of high winds (due to the electric arc)
  • Welding materials with high levels of contaminants or impurities (can affect the quality of the weld)

5. Flux-cored arc welding

Flux-cored arc welding, or FCAW, is a method of joining metal using a special type of electrode wire known as a flux core wire.

The wire is fed from a spool continuously through the welding equipment and out of the gun. The welding current flows through the equipment, melting the wire and the base metal.

Some flux core wires generate their own shielding gas as they melt, while others require the use of additional shielding gas. As the wire melts, it produces a gaseous cloud that shields the weld surface and removes impurities from the molten metal.

After the weld is completed, a layer of slag must be removed from the weld’s top. Despite this additional step, FCAW is a popular welding technique because it produces high-quality welds quickly and is very versatile.

FCAW equipment is similar to that used in gas metal arc welding (GMAW), and both methods are semiautomatic, which means that the wire is fed automatically but the welder moves the gun manually. Welding supply stores and other retailers stock FCAW equipment and filler metals.

Applications:

  • Welding thick or heavy sections of metal
  • Welding in outdoor conditions (with proper shielding gas)
  • Welding in high-production environments
  • Welding in dirty or contaminated environments

Situations to Avoid:

  • Welding thin or small pieces of metal (more suited for TIG welding)
  • Welding high alloy or stainless steel (can affect the quality of the weld)
  • Welding in confined spaces (due to the production of harmful gases)
  • Welding in the presence of high winds (due to the electric arc)

Comparison Table:

Welding ProcessApplicationsSituations to Avoid
Oxyacetylene weldingWelding and brazing thin or small pieces of metal; welding and brazing dissimilar metals; cutting and piercing metalWelding thick or heavy sections of metal; welding high alloy or stainless steel; welding in high wind or outdoor conditions; welding in confined spaces
Shielded metal arc welding (Stick)Welding thick or heavy sections of metal; welding in outdoor conditions; welding in dirty or contaminated environments; welding on dirty or painted surfacesWelding thin or small pieces of metal; welding high alloy or stainless steel; welding in confined spaces; welding in the presence of high winds
Gas tungsten arc welding (TIG)Welding thin or small pieces of metal; welding high alloy or stainless steel; welding in outdoor conditions (with proper shielding gas); welding materials with high levels of contaminants or impurities; welding in high-precision environmentsWelding thick or heavy sections of metal; welding in high production environments; welding in confined spaces; welding in the presence of high winds
Gas metal arc welding (MIG)Welding thick or heavy sections of metal; welding in high production environments; welding in outdoor conditions; welding on dirty or painted surfacesWelding thin or small pieces of metal; welding high alloy or stainless steel; welding in confined spaces; welding in the presence of high winds
Flux-cored arc weldingWelding thick or heavy sections of metal; welding in high production environments; welding in outdoor conditions; welding on dirty or painted surfacesWelding thin or small pieces of metal; welding high alloy or stainless steel; welding in confined spaces; welding in the presence of high winds
Continue Reading